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Solution of the Vlasov equation for a static 
self-consistent potential 
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Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 24 April 1986 

Abstract. A generating function formalism for solving the Vlasov equation for a static 
self-consistent potential is presented. The transition density, transition current density and 
linear response function are derived. As an example the response to I" = 2+ and I" = 2- 
fields is studied for the case where the self-consistent potential is a harmonic oscillator. 

1. Introduction 

A classical many-body approach to the independent-particle approximation gives much 
insight into the interpretation of the properties of the collective excitations in nuclei. 
For this reason the Vlasov equation, the classical limit of the time-dependent Hartree- 
Fock (TDHF) equation, has been used recently as the starting point for several semi- 
classical models which aim to understand these properties [ 1-51. 

In the present work we introduce a mathematical formalism for solving the Vlasov 
equation for small vibrations around a spherical equilibrium shape in a fixed self- 
consistent potential. 

2. Solution of the Vlasov equation 

The Vlasov equation describes the time evolution of the distribution function f ( r ,  p ,  t )  
in phase space in the independent-particle approximation 

? f l a t + { f ;  h o l = O  (2.1) 

h o = p Z / 2 m +  U ( r )  ( 2 . 2 )  

where ho is the single-particle Hamiltonian 

{ , } are Poisson brackets, and U ( r )  is a fixed self-consistent interaction. 
Let fo(r ,  p )  be the distribution function that describes a stationary state, i.e. 

{ f o ,  ho) = 0. 

We introduce the set of all the distribution functions f ( r ,  p )  which are obtained from 
f o  by a canonical transformation [3] 

A = { f ( r , P ) : f ( r , P ) = f o ( r , p )  

+MO, W(r,p)+4{{fO, F ) ,  F } ( r , p ) + .  . . , F ( r , p )  is real}. 
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Next we assume that at some initial stage the system is in an equilibrium state described 
by the distribution function f o ( r ,  p )  and that at t = to a perturbation is switched on. 
The distribution function f( r, p ,  t )  at any time t > to is related to fo( r, p )  by a canonical 
transformation and therefore belongs to the set A. If fo( r, p )  is just a function of ho 
we may write, instead of (2.3), 

where F(r ,  p )  is a generating function for a canonical transformation. 

of excitation of the system, {Fa(r ,  p ,  t ) } ,  which are defined in the following way: 
It is convenient to introduce the set of the generating functions of the normal modes 

(2.5) {Fa ,  ho} = iwaFa Fo(r, P, t )  = Fa(r ,  P) exp(-iw,t). 

These functions can be chosen to obey orthogonality relations 

J 

where dT = g d3r d3p/(2.n)’ is the volume element of phase space (g = 4 is the spin- 
isospin multiplicity) and No is the normalisation constant: 

The normalised generating functions are 

=Fa/.“. 

Later on in this section we have to assume that the functions { form a complete 
set. It is useful to express the transition amplitudes into the normal modes of excitation 
due to an external field R ( r ,  p )  in terms of these generators: 

Roo = -i dT fo{R,  9:}. (2.8) 

In order to study small deviations from equilibrium we suppose that the generator 
F (  r, p ,  t )  in expression (2 .4)  is infinitesimal and, therefore, we retain only the first-order 
terms in this expression 

( 2 . 9 ~ )  

5 

f(r, P, t )  =fo(r, P) + W r ,  P I  t )  

where 

(2 .9b)  

We consider our system to be perturbed by an external field P ( t ) R ( r , p )  and look 
for the solutions of the linearised Vlasov equation 

a 
- V+{% ha} = - P ( t ) { f o ,  RI.  
at 

(2.10) 
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It is useful to work with the Fourier transform of 6f ( r ,  p ,  t )  

~ ( r , p ,  0) = 5 dt  exp(iwt)af(r,p, t )  

(we assume that w has a small positive imaginary part it to ensure the convergence 
of the integral) and to expand 6f ( r ,  p ,  w )  and the perturbing field R ( r ,  p )  in terms of 
the functions {s,} 

(2.11) 

(2.12) 

The coefficients of these expansions, c, and R,, are related by the linearised Vlasov 
equation 

Ro 
w - w, + it‘ c, =-$(U)  (2.13) 

From the orthogonality relations we obtain the inverse of (2.12) 

R ,  = i dT{ S,*, R }  fo. (2.14) 

The density fluctuation 6p( r, t )  and the current density j (  r, t )  which are produced by 
the perturbation are defined in the usual way: 

I 

and 

(2.15) 

(2.16) 

We shall define the linear response function and the strength function for two 
special cases of R (  r, p ) :  

(a) R ( r ,  P) = O ( r )  

(b) R ( r , p )  = p * A ( r )  
from the Fourier transforms of (2.15) and (2.16) 

For the case R ( r , p )  = Q ( r )  we get from (2.171, (2.13) and (2.14) 

(2.17) 

(2.18) 

(2.19) 

By definition the linear response function D ( r ,  r ‘ ,  w )  is given by 

6 p = p ( w )  I d 3 r ‘ D ( r ,  r ’ , w ) Q ( r ’ ) .  (2.20) 
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Comparing this expression with (2 .19)  we deduce 

(2 .21)  

Finally we obtain for the strength function 

d3r’ Q ( r ) D ( r ,  r’, w ) Q ( r ‘ )  
77 

or, defining Qa0 by ( 2 . 8 ) ,  

S ( w )  = C a ( w  - w,)lQ,o12. (2 .22)  
0 

For the second case R ( r , p )  = p -  A(r) the linear response function D , k ( r ,  r’, w )  is 
a second-rank tensor defined in the following way [ 6 ] :  

From (2 .18) ,  (2 .13)  and (2 .14)  we get for the current density 

Therefore 

and this result enables us to calculate the strength function 

S (U)=- - Im d3r d 3 r ’ x A i ( r ) D i k ( r ,  r ‘ , w ) A k ( r ’ )  
5r ‘ J J i k  

where 

It is easy to derive the sum rules S ,  and S3:  

(2 .23)  

(2 .24)  

(2 .25)  

( 2 . 2 6 ~ )  

(2 .26b)  
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The proof is as follows: 

-4  I dTfo{R, {ho ,  R } }  = -4 d r -  { h o ,  R}2 I :; 

= @:R,R:. 
U 

( W , > O )  

In the same way, the sum rule S - ,  is preserved. If we consider PR(r,  p )  to be a static 
external field we obtain 

Indeed 

3. Harmonic oscillator static self-consistent potential 

We apply this formalism to the case 

U (  r)  = $mR2r2.  (3.1) 

The generators of the normal modes of excitation, F, (not normalised), are expressed 
in terms of the elementary functions 7, and 7:: 

7, = ( 2 m ~ ) - l ” ( p ,  + i m n r , )  ( 3 . 2 ~ )  

qf  = ( 2 m f i ) - ’ 1 2 ( p ,  - i m n r , )  i = x, y ,  z. (3 .2b)  

The most general form of F, is 

F, = n vP~7:~l (3.3) 

corresponding to the normal-mode frequency 

wm = c ( a ,  - b,)Q (3.4) 
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so that F, and FZ obey the equations 

{ho ,  Fa)  = i d ? ,  

{ h o ,  F:} = -iw,Fz. 

(3 .5a )  

(3 .5b)  

If in the expression (3 .3)  ai  = bi ,  the generator F, is a constant of motion and, therefore, 
produces no excitation 

{ ho, n I s:;q:"} = 0. 

In the last part of this work we study the response to the perturbations 

(3 .6)  

which induces transitions in the system of the type I" = 2' and will give rise to an 
irrotational and incompressible flow and 

(b)  (3 .7)  

whose effect shall only be seen in the current density and will induce the so-called 
twist mode a 1"=2- transition [7]. 

3.1. The electric excitation 

In terms of the elementary functions qt and 777, Q ( r )  has the form 

This operator excites normal modes with frequency 2 0 ( F ,  = 7721, T;,, 77;) and with 
frequency zero (Fa  = V,T,*, ~ ~ r l ? ,  7 7 , 7 7 3  

We suppose that the equilibrium distribution function is given by the Thomas-Fermi 
approximation 

f o ( r , p ) =  e(EF-ho) 

with 

and E ,  the Fermi energy. 

the sum rule SI:  
From expressions (2 .8 )  and (2 .26a)  we obtain the transition amplitudes Ql0 and 

a.=--(-) 1 5gE: 
4mR 67rR4 

and 
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The transition density Sp and current density j caused by the field Q( r )  are calculated 
from their definitions (2.15) and (2.16) (or (2.17) and (2.18) if we are only interested 
in their Fourier transforms) 

and we prove that the current is proportional to the gradient of the imposed field. 

3.2. The magnetic excitation 

The perturbation (3.7) in terms of 7, and 7: is given by 

and excites modes with frequency R corresponding to the generators Fl = r],qy7: and 
F2 = 7,7,7;. The transition amplitudes from the ground state to these excited states 
obtained from (2.8) are 

and the energy weighted sum rule S ,  as calculated from (2.26~1) gives 

Because of the spherical symmetry of the problem this perturbation does not give rise 
to any change in the density, i.e. Sp = 0. Nevertheless it induces a current density 

j ( r ,  U )  = -$(U) - " (  + ) (2mEF - m Z f 1 2 r 2 ) 3 / 2 A ( r ) .  
2.rr2m w - n + i (  w + n + i (  

Taking into account the form (3.7) of the field A ( r )  this mode describes a rotation of 
the upper half of the system in opposite phase to the lower half. 

4. Generalisation of the formalism 

The possibility of finding a set of generating functions F , ( r , p )  labelled only by a 
discrete parameter n has been considered. However, in general, the introduction of 
continuous parameters yi may be necessary. These parameters are associated with 
constants of motion such as the total energy or angular momentum of the single particle. 
It is therefore necessary to modify the formalism proposed in this paper so that it also 
contains these more general cases. 

Let { F n Y ( r , p ) }  be a complete set of generating functions labelled by a discrete 
parameter n and a continuous parameter y of the form 
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where c(r ,p)  is a constant of motion. Instead of (2.5) these functions will satisfy the 
equations 

{Fny(*,P), hl=iwnyFny(r ,~)  (4.2) 

where the excitation energies wnY are also labelled by the continuous parameter y. 
The orthogonality relations now have the form 

r 

Finally the expansion of the transition operator R(r ,p) ,  the transition density Sp(r, t )  
or the transition current density j ( r ,  t )  in terms of these functions will carry not only 
a summation over the discrete parameter n but also an integral over the continuous 
parameter y, e.g. 

and 

( 4 . 4 ~ )  

(4.46) 

(4.4c) 

As an example we will obtain the functions Fn,(x, p )  for a one-dimensional system. 
In this case there is one constant of the motion, the energy, and it is advisable to make 
a change of variables from (x, p )  to (x, ho) so that we have 

Fne(x,p)=Fne(x, ho)=Fne(x)a(~ -ho)  (4.5) 
where the functions F,,(x) are solutions of the equation 

{ 5 n e  (x),  ho)S( E - ho) = i w n E F n s  (x )  8 ( E - ho) ( 4 . 6 ~ )  

or 

and 

( 4 . 7 ~ )  

(4.7b) 

with 

P(E,X)  =(2me - m * ~ ~ x ~ ) ' ' * .  

The frequencies of the normal modes are determined by the periodic conditions 

~ , , T ( E )  = 2 m  ( 4 . 8 ~ )  
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with 

(4.8b) 

where the integral is taken over a complete cycle or if p (  E ,  x)  = 0 at x1 and x2 

We may also notice that if we introduce (4.7) into (4.6a), ff!,,(x) excites the mode 
with frequency U,, and IF:,(x) excites the mode with frequency - u , ~  and, therefore, 
should be interpreted as being canonically conjugated functions. In general ff k E ( x )  
and F$Jx) will obey the orthogonality relations (4.3). 

For the case U ( x )  = f m R 2 x 2  we recover (3.2) from (4.7), and U,, = nS1 from (4.8). 
When we perform the integral in the exponent of (4.7) we obtain, for n = 1, 

and 

which are just the functions 7 and T *  defined in (3.2). 

5. Conclusions 

We have proposed a mathematical formalism for solving the Vlasov equation with no 
interaction potential. The relevant quantities for the description of the system such as 
the transition density and current density or the response function were expressed in 
terms of generating functions for the normal modes of the system. This formalism was 
applied to the case of a harmonic oscillator static self-consistent potential and we have 
obtained the response to a I" = 2+ divergence-free irrotational field and to a non-normal 
parity excitation I" = 2-. These would excite the I" = 2- twist mode, a 1 ha isoscalar 
transition. 

Finally the formalism was extended so that it could be applied to a more general 
self-consistent potential. In this case, the generating functions of the elementary 
excitations need to be parametrised by both discrete and continuous parameters. 
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